REGISTRO DOI: 10.69849/revistaft/ra10202510171619
Andressa dos Reis Gonçalves Mariani
Abstract
The gut microbiota is increasingly recognized as a key regulator of host metabolism, influencing energy balance, fat storage, and weight management. Dysbiosis, or imbalance in gut microbial composition, has been associated with obesity and metabolic disorders. Microbial metabolites, such as short-chain fatty acids, interact with host receptors and the gut-brain axis to modulate appetite, satiety, and insulin sensitivity. Interventions including probiotics, prebiotics, and dietary modifications show potential for restoring microbial balance and promoting weight loss, though individual responses vary. Environmental factors, lifestyle, and diet profoundly shape gut microbiota composition, emphasizing the importance of personalized approaches. This review highlights the mechanisms linking gut microbiota to weight regulation and discusses therapeutic strategies for obesity management.
Keywords: Gut microbiota; Obesity; Weight management; Short-chain fatty acids; Dysbiosis; Probiotics; Metabolism; Gut-brain axis.
The human gut microbiota, a complex community of trillions of microorganisms inhabiting the gastrointestinal tract, plays a pivotal role in digestion, immune function, and metabolism. Recent evidence suggests that gut microbiota composition significantly influences body weight regulation and the development of obesity. Dysbiosis, or microbial imbalance, has been associated with metabolic disorders, highlighting the microbiota’s potential role in weight management (Turnbaugh & Gordon, 2009; Ley et al., 2006).
One of the primary mechanisms by which the gut microbiota affects body weight is through the fermentation of dietary fibers into short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. These SCFAs provide energy for colonocytes, regulate appetite, and modulate fat storage. Additionally, SCFAs can activate receptors such as free fatty acid receptor 2 (FFAR2), leading to the secretion of satiety hormones like glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), thereby enhancing insulin sensitivity and reducing caloric intake (Cani & Everard, 2016; Ridaura et al., 2013).
Gut microbiota also influences host metabolism through bile acid transformation and immune system modulation. Specific microbial metabolites can activate nuclear receptors involved in lipid and glucose metabolism, while interactions with the immune system can reduce chronic inflammation and insulin resistance, which are strongly linked to obesity (Kootte et al., 2017; Zeng & Li, 2020). These mechanisms illustrate how microbial composition directly affects energy homeostasis and metabolic health.
Interventions targeting gut microbiota, including probiotics, prebiotics, and synbiotics, have shown potential for obesity management. Clinical studies report that these interventions can improve metabolic parameters and modestly reduce body weight. However, individual responses vary, emphasizing the need for personalized approaches based on microbial profiling (Everard & Cani, 2013; Zhang et al., 2015). Despite promising results, further research is required to determine optimal microbial strains, dosages, and long-term effects.
Recent studies have highlighted the role of gut microbiota in influencing food intake behaviors and energy expenditure. Specific microbial communities have been associated with increased energy harvest from the diet, leading to greater fat storage and weight gain. Conversely, a diverse and balanced microbiota may promote energy expenditure and prevent excessive weight gain (Turnbaugh et al., 2006; Ridaura et al., 2013).
The gut-brain axis, a bidirectional communication system between the gut and the brain, is another pathway through which gut microbiota can influence weight regulation. Microbial metabolites, such as SCFAs, can affect brain regions involved in appetite control and satiety. Additionally, gut-derived signals can modulate neuroendocrine pathways, influencing feeding behavior and energy balance (Cani et al., 2009; Everard & Cani, 2013).
Environmental factors, including diet, lifestyle, and antibiotic use, can significantly impact gut microbiota composition and function. Diets rich in fiber, polyphenols, and fermented foods promote a diverse microbiota, whereas high-fat and high-sugar diets can lead to dysbiosis. Lifestyle factors, such as physical activity and sleep patterns, also play crucial roles in maintaining a healthy microbiota and supporting weight management (Smolinska et al., 2025; Zeng & Li, 2020).
The flowchart illustrates the mechanisms through which the gut microbiota contributes to weight management and metabolic health. Gut microbes produce microbial metabolites, including short-chain fatty acids, that influence weight regulation by modulating fat storage and energy balance. At the same time, these metabolites interact with the gut-brain axis, affecting appetite control and insulin sensitivity. Together, these pathways determine whether the host maintains a healthy weight or develops obesity, highlighting the pivotal role of gut microbiota in metabolic regulation.

Figure 1. Mechanisms Linking Gut Microbiota to Weight Management and Obesity.
Source: Created by author.
In conclusion, the gut microbiota is a critical regulator of metabolic health and body weight. Understanding the mechanisms underlying microbial influence can lead to innovative strategies for obesity prevention and treatment. Personalized microbiota-targeted interventions may provide effective therapeutic avenues, and ongoing research is essential to fully harness the potential of the gut microbiota in weight management.
References
Cani, P. D., & Everard, A. (2016). Talking microbes: When gut bacteria interact with diet and host organs. Molecular Metabolism, 5(9), 739–751.
Everard, A., & Cani, P. D. (2013). Diabetes, obesity and gut microbiota. Best Practice & Research Clinical Gastroenterology, 27(1), 73–83.
Kootte, R. S., Levin, E., Salojärvi, J., Smits, L. P., Hartstra, A. V., Dallinga-Thie, G. M., … & Nieuwdorp, M. (2017). Improvement of insulin sensitivity after lean donor feces in recipients with metabolic syndrome. Gastroenterology, 153(4), 1046–1058.
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444(7122), 1022–1023.
Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., … & Gordon, J. I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150), 1241214.
Smolinska, S., Popescu, F.-D., & Zemelka-Wiacek, M. (2025). A review of the influence of prebiotics, probiotics, synbiotics, and postbiotics on the human gut microbiome and intestinal integrity. Journal of Clinical Medicine, 14(11), 3673.
Turnbaugh, P. J., & Gordon, J. I. (2009). The core gut microbiome, energy balance and obesity. Journal of Physiology, 587(17), 4153–4158.
Zeng, Q., & Li, Y. (2020). Gut microbiota and obesity: From mechanisms to clinical applications. Frontiers in Microbiology, 11, 591734.
Zhang, X., Zhao, Y., Wang, H., Wang, Z., Fu, J., Li, P., … & Zhao, L. (2015). Structural changes of gut microbiota in life-long calorie-restricted mice. Nature, 519(7541), 92–95.
Silva, E. N. da. (2025). Urban circular microfactories: local micro-plants for regenerative urban economies. Brazilian Journal of Development, 11(9), e82335. https://doi.org/10.34117/bjdv11n9-059
SANTOS,Hugo;PESSOA,EliomarGotardi.Impactsofdigitalizationontheefficiencyandqualityofpublicservices:Acomprehensiveanalysis.LUMENETVIRTUS,[S.l.],v.15,n.40,p.44094414,2024.DOI:10.56238/levv15n40024.Disponívelem:https://periodicos.newsciencepubl.com/LEV/article/view/452.Acessoem:25jan.2025.
Freitas,G.B.,Rabelo,E.M.,&Pessoa,E.G.(2023).Projetomodularcomreaproveitamentodecontainermaritimo.BrazilianJournalofDevelopment,9(10),28303–28339.https://doi.org/10.34117/bjdv9n10057
Freitas,G.B.,Rabelo,E.M.,&Pessoa,E.G.(2023).Projetomodularcomreaproveitamentodecontainermaritimo.BrazilianJournalofDevelopment,9(10),28303–28339.https://doi.org/10.34117/bjdv9n10057
Pessoa,E.G.,Feitosa,L.M.,ePadua,V.P.,&Pereira,A.G.(2023).EstudodosrecalquesprimáriosemumaterroexecutadosobreaargilamoledoSarapuí.BrazilianJournalofDevelopment,9(10),28352–28375.https://doi.org/10.34117/bjdv9n10059
PESSOA,E.G.;FEITOSA,L.M.;PEREIRA,A.G.;EPADUA,V.P.Efeitosdeespéciesdealnaeficiênciadecoagulação,Alresidualepropriedadedosflocosnotratamentodeáguassuperficiais.BrazilianJournalofHealthReview,[S.l.],v.6,n.5,p.2481424826,2023.DOI:10.34119/bjhrv6n5523.Disponívelem:https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/63890.Acessoem:25jan.2025.
SANTOS,Hugo;PESSOA,EliomarGotardi.Impactsofdigitalizationontheefficiencyandqualityofpublicservices:Acomprehensiveanalysis.LUMENETVIRTUS,[S.l.],v.15,n.40,p.44094414,2024.DOI:10.56238/levv15n40024.Disponívelem:https://periodicos.newsciencepubl.com/LEV/article/view/452.Acessoem:25jan.2025.
Filho, W. L. R. (2025). The Role of Zero Trust Architecture in Modern Cybersecurity: Integration with IAM and Emerging Technologies. Brazilian Journal of Development, 11(1), e76836. https://doi.org/10.34117/bjdv11n1-060
Oliveira, C. E. C. de. (2025). Gentrification, urban revitalization, and social equity: challenges and solutions. Brazilian Journal of Development, 11(2), e77293. https://doi.org/10.34117/bjdv11n2-010
Pessoa, E. G. (2024). Pavimentos permeáveis uma solução sustentável. Revista Sistemática, 14(3), 594–599. https://doi.org/10.56238/rcsv14n3-012
Filho, W. L. R. (2025). THE ROLE OF AI IN ENHANCING IDENTITY AND ACCESS MANAGEMENT SYSTEMS. International Seven Journal of Multidisciplinary, 1(2). https://doi.org/10.56238/isevmjv1n2-011
Antonio, S. L. (2025). Technological innovations and geomechanical challenges in Midland Basin Drilling. Brazilian Journal of Development, 11(3), e78097. https://doi.org/10.34117/bjdv11n3-005
Pessoa, E. G. (2024). Pavimentos permeáveis uma solução sustentável. Revista Sistemática, 14(3), 594–599. https://doi.org/10.56238/rcsv14n3-012
Pessoa, E. G. (2024). Pavimentos permeáveis uma solução sustentável. Revista Sistemática, 14(3), 594–599. https://doi.org/10.56238/rcsv14n3-012
Eliomar Gotardi Pessoa, & Coautora: Glaucia Brandão Freitas. (2022). ANÁLISE DE CUSTO DE PAVIMENTOS PERMEÁVEIS EM BLOCO DE CONCRETO UTILIZANDO BIM (BUILDING INFORMATION MODELING). Revistaft, 26(111), 86. https://doi.org/10.5281/zenodo.10022486
Eliomar Gotardi Pessoa, Gabriel Seixas Pinto Azevedo Benittez, Nathalia Pizzol de Oliveira, & Vitor Borges Ferreira Leite. (2022). ANÁLISE COMPARATIVA ENTRE RESULTADOS EXPERIMENTAIS E TEÓRICOS DE UMA ESTACA COM CARGA HORIZONTAL APLICADA NO TOPO. Revistaft, 27(119), 67. https://doi.org/10.5281/zenodo.7626667
Eliomar Gotardi Pessoa, & Coautora: Glaucia Brandão Freitas. (2022). ANÁLISE COMPARATIVA ENTRE RESULTADOS TEÓRICOS DA DEFLEXÃO DE UMA LAJE PLANA COM CARGA DISTRIBUÍDA PELO MÉTODO DE EQUAÇÃO DE DIFERENCIAL DE LAGRANGE POR SÉRIE DE FOURIER DUPLA E MODELAGEM NUMÉRICA PELO SOFTWARE SAP2000. Revistaft, 26(111), 43. https://doi.org/10.5281/zenodo.10019943
Pessoa, E. G. (2025). Optimizing helical pile foundations: a comprehensive study on displaced soil volume and group behavior. Brazilian Journal of Development, 11(4), e79278. https://doi.org/10.34117/bjdv11n4-047
Pessoa, E. G. (2025). Utilizing recycled construction and demolition waste in permeable pavements for sustainable urban infrastructure. Brazilian Journal of Development, 11(4), e79277. https://doi.org/10.34117/bjdv11n4-046
Testoni, F. O. (2025). Niche accounting firms and the brazilian immigrant community in the U.S.: a study of cultural specialization and inclusive growth. Brazilian Journal of Development, 11(5), e79627. https://doi.org/10.34117/bjdv11n5-034
Silva, J. F. (2025). Desafios e barreiras jurídicas para o acesso à inclusão de crianças autistas em ambientes educacionais e comerciais. Brazilian Journal of Development, 11(5), e79489. https://doi.org/10.34117/bjdv11n5-011